Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase
نویسندگان
چکیده
BACKGROUND Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic bioethanol. In this study, we developed a cellulolytic yeast consortium for CBP, based on the surface display of cellulosome structure, mimicking the cellulolytic bacterium, Clostridium thermocellum. RESULTS We designed a cellulolytic yeast consortium composed of four different yeast strains capable of either displaying a scaffoldin (mini CipA) containing three cohesin domains derived from C. thermocellum, or secreting one of the three types of cellulases, C. thermocellum CelA (endoglucanase) containing its own dockerin, Trichoderma reesei CBHII (exoglucanase) fused with an exogenous dockerin from C. thermocellum, or Aspergillus aculeatus BGLI (β-glucosidase). The secreted dockerin-containing enzymes, CelA and CBHI, were randomly assembled to the surface-displayed mini CipA via cohesin-dockerin interactions. On the other hand, BGLI was independently assembled to the cell surface since we newly found that it already has a cell adhesion characteristic. We optimized the cellulosome activity and ethanol production by controlling the combination ratio among the four yeast strains. A mixture of cells with the optimized mini CipA:CelA:CBHII:BGLI ratio of 2:3:3:0.53 produced 1.80 g/l ethanol after 94 h, indicating about 20% increase compared with a consortium composed of an equal amount of each cell type (1.48 g/l). CONCLUSIONS We produced cellulosic ethanol using a cellulolytic yeast consortium, which is composed of cells displaying mini cellulosomes generated via random assembly of CelA and CBHII to a mini CipA, and cells displaying BGLI independently. One of the advantages of this system is that ethanol production can be easily optimized by simply changing the combination ratio of the different populations. In addition, there is no limitation on the number of enzymes to be incorporated into this cellulosome structure. Not only cellulases used in this study, but also any other enzymes, including cellulases and hemicellulases, could be applied just by fusing dockerin domains to the enzymes.
منابع مشابه
Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production.
In this paper, we report the surface assembly of a functional minicellulosome by using a synthetic yeast consortium. The basic design of the consortium consisted of four different engineered yeast strains capable of either displaying a trifunctional scaffoldin, Scaf-ctf (SC), carrying three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminoco...
متن کاملSimultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
BACKGROUND The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yea...
متن کاملEngineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars
BACKGROUND Consolidated bioprocessing (CBP), integrating cellulase production, cellulose saccharification, and fermentation into one step has been widely considered as the ultimate low-cost configuration for producing second-generation fuel ethanol. However, the requirement of a microbial strain able to hydrolyze cellulosic biomass and convert the resulting sugars into high-titer ethanol limits...
متن کاملSelf-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production.
Yeast to directly convert cellulose and, especially, the microcrystalline cellulose into bioethanol, was engineered through display of minicellulosomes on the cell surface of Saccharomyces cerevisiae. The construction and cell surface attachment of cellulosomes were accomplished with two individual miniscaffoldins to increase the display level. All of the cellulases including a celCCA (endogluc...
متن کاملEfficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
BACKGROUND The recombinant yeast strains displaying the heterologous cellulolytic enzymes on the cell surface using the glycosylphosphatidylinositol (GPI) anchoring system are considered promising biocatalysts for direct conversion of lignocellulosic materials to ethanol. However, the cellulolytic activities of the conventional cellulase-displaying yeast strains are insufficient for the hydroly...
متن کامل